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Molecular dynamics simulation of the transition from dispersed to solid phase
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Molecular dynamics simulations in two dimensions of particles interacting with finite potentials comparable
to kBT yield aggregates which cross over from a fractal to a compact crystalline morphology. Growth kinetics
and aggregate size distributions evolve from nonequilibrium to equilibrium limits.

DOI: 10.1103/PhysRevE.69.031408 PACS number~s!: 82.70.Gg, 82.70.Rr
a
rg
om
r-
da
te

ids
te
-
q

-

-
n

n
om

n
ilib
la
a
d

le

a
tra

es
nd
o

ni
n
rs

v
-

og

on
rep-

um
nd
A
ue
w
ific

ys-
n-

-
s

nd
n-
read

idal
tis-

on

u-
r a

a
trac-

s of

-

r

an
In a wide variety of natural and technical settings sm
particles in a dispersed phase come together to form la
clusters when the small particle system becomes, by s
manner, unstable@1#. From a broad perspective, the ‘‘pa
ticles’’ can be atoms, ions, or molecules, as well as colloi
particles, and the transition from a dispersed phase to clus
can include the formation of precipitated crystalline sol
from solutions as well as the formation of fractal aggrega
in colloids and aerosols@1,2#. Formation of condensed, crys
talline solids or open, random aggregates represent the e
librium and nonequilibrium limits of this transition. Limiting
nonequilibrium models exist@3# and are successful in de
scribing aggregation:~i! diffusion limited cluster aggregation
~DLCA! where the rate limiting step is the Brownian diffu
sion by which the particles meet and stick irreversibly, a
~ii ! reaction limited cluster aggregation~RLCA! where the
limiting step is the small probability of cluster sticking whe
they touch. There is, however, no general theory that enc
passes the entire dispersed state to solid transition.

In this letter we present molecular dynamics simulatio
which span the gap between the equilibrium and nonequ
rium limits. We demonstrate our general results with simu
tions of a specific example, a two-dimensional second
minimum colloid@4#, by comparing cluster morphology an
kinetics to the traditional DLCA, RLCA@3# and aggregation-
fragmentation models@5,6#.

The interactions between two charged colloidal partic
in a prototypical charge-stabilized colloidal solution~such as
polystyrene spheres in water! can be described in terms of
screened electrostatic repulsion plus a van der Waals at
tion, the DLVO potential@4#. In addition to the primary van
der Waals minimum at contact, the superposition of th
two interactions can also lead to the formation of a seco
ary minimum@4,8# in the interaction potential between tw
spheres. If the depth of this secondary minimum is a fewkBT
and if it is separated from the primary van der Waals mi
mum by a large Coulomb barrier, aggregation will be co
trolled by this secondary minimum and hence will be reve
ible. In pioneering work Skjeltorp @9# studied two-
dimensionalaggregates of polystyrene spheres attracting
a strong~severalkBT) secondary minimum. Skjeltorp’s clus
ters ranged from fractal aggregates with coordination'2 to
aggregates with hexagonally-packed crystalline morphol
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on short length scales and a ramified fractal morphology
large scales, to dense, faceted crystals. Our simulations
licate much of this morphology as the secondary minim
depth is changed. They also show how growth kinetics a
resulting cluster size distributions evolve from the DLC
and RLCA limits to systems which approach equilibrium d
to fragmentation, which is readily allowed by a shallo
minimum. Our results are quite general but have spec
application to other diverse situations including protein cr
tallization @10#, binary colloids on a substrate under the i
fluence of an ac electric field@11#, and colloids interacting
via depletion forces@12,13#. An example of the latter is Hob
bie’s work @13# on depletion driven self-assembly of colloid
in two dimensionsthat shows reversible aggregation a
eventual crystallization. The equations of motion in the co
stant temperature molecular dynamics method used here
as

rẄ i52¹W Ui2GrẆ i1WW i~ t !, ~1!

where G is the monomer friction coefficient andWW i(t),
which describes the random force acting on each collo
particle, is a Gaussian white noise with zero mean and sa
fies the two dimensional fluctuation-dissipation relati

^WW i(t)•WW j (t8)&54kBTGd i j d(t2t8). Hydrodynamic inter-
actions, including lubrication forces, are ignored in the sim
lation as they may not be of predominant importance fo
study of quiescent secondary minimum colloids@7#. The po-
tential U is modeled by the DLVO potential consisting of
screened electrostatic repulsion and a van der Waals at
tion @8#:

U~x!5J0

e2k(x21)

x
2

A

12
h~x!, ~2!

wherex5r /s is the reduced distance between the center
two particles withs being the diameter of the particles,k is
the reduced inverse Debye length,J0 is the electrostatic cou
pling constant related to the surface or zeta potential,A is the
Hamaker constant~considered to be 6.5310220 J for poly-
styrene spheres!, and the functionh(x) describes the van de
Waals attraction:

h~x!5
1

x221
1

1

x2
12 lnS 12

1

x2D . ~3!-
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The parameters of the potentialU(x) are chosen such tha
there is a secondary minimum atx51.061 with well depth
U0 and an energy barrier.10kBT at x51.01. The potential
is cut off atx51.5. We have integrated@14# the equations of
motion for a system size of 2562 and 13 107 particles with
G50.5 and a time stepDt50.005 in reduced units o
s(m/J0)1/2 with m51. In Figs. Fig. 1~a! and 1~b! we show
late-time snapshots for secondary well depthU057kBT and
4kBT, respectively. A striking similarity to Skjeltorp’s cluste
morphology is seen in Fig. 1~a! for U057kBT: the aggre-
gates show hexagonal closed-packed crystalline orderin
short length scales@inset of Fig. 1~a!# but ramified fractal
nature at larger length scales. To be specific, this cluster m
phology cannot be reproduced by a traditional DLCA mo
eling for which the typical coordination number of a partic
in a cluster is'2. For a shallower well depth,U054kBT,
the clusters are compact and the presence of a steady
number of monomers in the system at late times sugge
solid-gas equilibrium. The approach to equilibrium is qua
tified by the evolution of mean cluster size as we will pres
shortly.

The large length scalecluster morphology is quantified in
Fig. 2 by showing the evolution of the fractal dimension

FIG. 1. Late time (t55000) snapshots of the system for~a!
U057kBT and ~b! U054kBT. The inset of~a! shows hexagona
closed-packed crystalline ordering at short length scales.
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an ensemble of clusters for both values ofU0 considered in
the simulations. The fractal dimension of the clusters
U057kBT, determined from the slope of a log-log plot o
radius of gyration versus number of particles for an ensem
of clusters, compares well with the accepted value (D f
51.4) of the fractal dimension of two-dimensional~2D!
DLCA clusters. It is truly remarkable that molecular dynam
ics ~MD! simulations for a deep well depth,U057kBT, re-
produce the same large-scale fractal dimension as in
DLCA, even though the short length scale structures of
clusters are totally different in these two models. In contr
MD simulations with a well depth ofUo54kBT produce
compact clusters withD f52 that, as shown below, are i
equilibrium with a monomer gas.

For further quantitative comparison of the MD calculatio
with traditional models, we compute the mean-size of cl
ters s and the cluster-size distributionn(N). For U0
57kBT, one would expect that fragmentation of clusters w
be rare and a comparison with DLCA simulations will b
meaningful over the simulation time@15#. For this reason, we
also carry out large-scale DLCA calculations in two dime
sions for a comparison withU057kBT results. In Fig. 3~a!
we show a log-log plot of the mean cluster sizes versus time
t. The kinetic exponent for the MD simulations is found to
z50.6960.05 while for the 2D DLCA@16# @as shown in the
inset of Fig. Fig. 3~a!# z50.6960.03, clearly demonstrating
that MD simulations do reproduce DLCA kinetics for dee
enough well depths.

Although not a main focus of this study, it is still worth
while to introduce a scaling argument to understand
value of the kinetic exponentz. We first note that the kinetic
exponentz is related to the homogeneity of the aggregati
kernel l by z51/(12l). Next, we write the aggregation

FIG. 2. Mass fractal dimensionD f as a function of timet.
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kernelK as a product of an area cross sectionA5Rd21 and
a characteristic velocityv, i.e., K5vA. Here,R is the mean
radius of the clusters containingN particles. In the dilute
limit, the characteristic velocityv5D0 /R whereD0 is the
diffusion constant. SinceD0;1/R for Brownian aggregation
we obtainK;Rd23. Since,N;RD f ,K;N(d23)/D f . Thus,l
5(d23)/D f in the dilute limit. In three dimensions, thi
providesl50 andz51 as expected@2#. In two dimensions,
however, l521/D f520.7 with D f51.4 and hencez
50.59 in the dilute limit. Since the clusters are fractals,
cluster volume fraction (f v

c) increases as aggregation pr
ceeds. It is known that the kinetic exponentz increases as the
system gets dense@17#. In this cluster dense regime, one c
understand this increase ofz by considering that the charac
teristic velocity is now given byD0 /Rnn whereRnn is the
nearest neighbor distance and scales asRnn;Nc

1/d whereNc

is the number of clusters in the system. SinceNNc5Nm , the
number of monomers in the system which is a constantK
;N(d22)/D f21/d at the intermediate regime. This implie
l50.22 in three dimensions withD f51.8 and hencez
51.28 as seen before@17#. In two dimensions, on the othe
hand, l520.5 in this cluster dense regime yieldingz
50.67 in good agreement with both the 2D DLCA simul
tion and MD calculations shown in Fig. Fig. 1~a!.

The similarity between MD simulation for deep secon
ary well minimum and DLCA is further demonstrated in Fi

FIG. 3. ~a! Log-log plot of mean sizes as a function of timet for
U057kBT from 2D MD simulations. The inset shows results f
2D DLCA simulations.~b! Log-log plot of the reduced mean siz
s* as a function of reduced timet* for U054kBT. Results are
compared with the theoretical result@6# for coagulation-
fragmentation.
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4~a! where we plot the scaled cluster size distribution. T
graph demonstrates that scaling works well for MD simu
tions and, more importantly, the scaled size distribut
matches extremely well the distribution computed from t
2D DLCA simulation.

We now turn our attention to the MD results for a shallo
well depth, namely, forU054kBT. In this case, the fragmen
tation of the clusters plays an important role and the num
of clusters and the cluster size distribution approach a ste
state at late times. A mean-field model of random bond fr
mentation has been introduced by Family, Meakin, a
Deutch @5# and by Sorensen, Zhang, and Taylor~SZT! @6#
which compare well with simulations of coalescing and ra
domly fragmenting drops@18#. However, the validity of such
mean-field models in the context of real, reversible aggre
tion is not known. Thus, a comparison of MD results wi
random-bond fragmentation models will be important.

In terms of reduced variabless* 5s/s0 and t* 5t/t0 SZT
finds the following differential equation:

ds* /dt5s* l2s* a12, ~4!

wheres0 is the steady state mean size,t0 is the time to reach
the steady state, anda is the fragmentation kernel homoge
neity. We numerically solve this first order differential equ
tion for l520.7 and20.5, the two values ofl found in two
dimensions in the dilute and cluster dense regimes. In
SZT model, fragmentation is assumed to take place r
domly throughout the cluster, while here we expect clus
fragmentation to occur mostly at the surface. One can, h

FIG. 4. Scaling of the cluster size distribution.The times are
same in both figures. The results are averaged over 10 runs. In~a!,
open symbols represent the scaled cluster-size distribution for a
DLCA simulation.
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ever, choosea51/2 in the mean-field model of SZT t
roughly incorporate this possibility. In Fig. 3~b! we show
results for the MD simulation forU054kBT along with the
numerical results from Eq.~4!. The results compare well a
late times during the approach to equilibrium. The early-ti
MD data totally deviate from the mean-field results of SZ
and can be fit to a power-law which is reminiscent of
Ostwald ripening process@19#.

A scaling of the cluster-size distribution forU054kBT
shows a RLCA type power-law behavior, indicating that f
this shallower well depth clusters do not stick the first tim
they approach each other. Such a power-law form in
scaling distribution has been observed by Hobbie@13#
in experiments with 2D depletion-driven colloids. There
et

tt.
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also a hint of an exponential decay in the scaled size dis
bution for largex as seen by Hobbie.

In summary, we have carried out molecular dynam
simulations of two-dimensional secondary minimum colloi
to obtain a broad perspective into the dispersed-phas
solid-phase transition. We find that the morphology evolv
from a DLCA fractal morphology with increasing monom
coordination to compact crystals. The time at which th
crossover occurs depends on the well depth. The aggrega
kinetics and size distribution evolve from the DLCA limit t
a situation similar to RLCA but with fragmentation that a
lows a steady state, equilibrium size to be obtained.

Financial support for this work was given by NASA Gra
No. NAG 3-2360.
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