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Molecular dynamics simulation of the transition from dispersed to solid phase
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Molecular dynamics simulations in two dimensions of particles interacting with finite potentials comparable
to kg T yield aggregates which cross over from a fractal to a compact crystalline morphology. Growth kinetics
and aggregate size distributions evolve from nonequilibrium to equilibrium limits.
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In a wide variety of natural and technical settings smallon short length scales and a ramified fractal morphology on
particles in a dispersed phase come together to form largdarge scales, to dense, faceted crystals. Our simulations rep-
clusters when the small particle system becomes, by somiigate much of this morphology as the secondary minimum
manner, unstablgl]. From a broad perspective, the “par- depth is changed. They also show how growth kinetics and
ticles” can be atoms, ions, or molecules, as well as colloidaresulting cluster size distributions evolve from the DLCA
particles, and the transition from a dispersed phase to clustef§id RLCA limits to systems which approach equilibrium due
can include the formation of precipitated crystalline solidsto fragmentation, which is readily allowed by a shallow
from solutions as well as the formation of fractal aggregategninimum. Our results are quite general but have specific
in colloids and aerosold.,2]. Formation of condensed, crys- application to other diverse situations including protein crys-
talline solids or open, random aggregates represent the equgllization [10], binary colloids on a substrate under the in-
librium and nonequilibrium limits of this transition. Limiting fluence of an ac electric fielfl1], and colloids interacting
nonequilibrium models exist3] and are successful in de- Via depletion force$12,13. An example of the latter is Hob-
scribing aggregatior(i) diffusion limited cluster aggregation bie’s work[13] on depletion driven self-assembly of colloids
(DLCA) where the rate limiting step is the Brownian diffu- in two dimensionsthat shows reversible aggregation and
sion by which the particles meet and stick irreversibly, andeventual crystallization. The equations of motion in the con-
(i) reaction limited cluster aggregatigRLCA) where the stant temperature molecular dynamics method used here read
limiting step is the small probability of cluster sticking when as
they touch. There is, however, no general theory that encom-
passes the entire dispersed state to solid transition. Fi= —ﬁUi—Ffi+Wi(t), (1)

In this letter we present molecular dynamics simulations
which span the gap between the equilibrium and nonequilib-

rium limits. We demonstrate our general results with simuIa-Where I is the monomer friction coefficient anw(t),

tions of a specific example, a two-dimensional secondar%/hiqh de_scribes th_e randpm fqrce a_cting on each COIIOidf'iI
minimum colloid[4], by comparing cluster morphology and .art|c|e, IS & Gaqssmnlwhlte noise V\."th ZEro mean and gatls-
kinetics to the traditional DLCA, RLCA3] and aggregation- f|e;s theﬁ two dimensional fluctuatlon—d|SS|pat|qn .rela'uon
fragmentation modelf5,6]. (Wi(t) - Wi(t'))=4kgTI" 5 5(t—t'). Hydrodynamic inter-

The interactions between two charged colloidal particlesctions, including lubrication forces, are ignored in the simu-
in a prototypical charge-stabilized colloidal solutigeuch as  lation as they may not be of predominant importance for a
polystyrene spheres in wajezan be described in terms of a Study of quiescent secondary minimum colloj@ The po-
screened electrostatic repulsion plus a van der Waals attratential U is modeled by the DLVO potential consisting of a
tion, the DLVO potentia[4]. In addition to the primary van spreened electrostatic repulsion and a van der Waals attrac-
der Waals minimum at contact, the superposition of thes&on [8]:
two interactions can also lead to the formation of a second-
ary minimum[4,8] in the interaction potential between two
spheres. If the depth of this secondary minimum is akgiv
and if it is separated from the primary van der Waals mini-
mum by a large Coulomb barrier, aggregation will be con-wherex=r/q is the reduced distance between the centers of
trolled by this secondary minimum and hence will be reverswyo particles witho being the diameter of the particldsis
ible. In pioneering work Skjeltorp[9] studied two-  the reduced inverse Debye lengflg,is the electrostatic cou-
dimensionalaggregates of polystyrene spheres attracting vigyjing constant related to the surface or zeta poterfia, the
a strong(severakgT) secondary minimum. Skjeltorp’s clus- Hamaker constantconsidered to be 6610 2°J for poly-

ters ranged from fractal aggregates with coordinatidhto  gtyrene sphergsand the functiom(x) describes the van der
aggregates with hexagonally-packed crystalline morphologyyaals attraction:

e kx-1) A
U(X)=Jo—x - 5h(x), 2

*Present address: Polymers Division, National Institute of Stan- h(x)= 1 + i_;_z In
dards and Technology, Gaithersburg, MD 20899, USA. x2—1 x?
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. FIG. 2. Mass fractal dimensioD; as a function of time.
50 | an ensemble of clusters for both valueslyf considered in
the simulations. The fractal dimension of the clusters for
Uo=T7kgT, determined from the slope of a log-log plot of
0

radius of gyration versus number of particles for an ensemble
of clusters, compares well with the accepted valu; (
®) X =1.4) of the fractal dimension of two-dimensionéD)
FIG. 1. Late time {=5000) snapshots of the system f@ _DLCA clus.ters. I'F is truly remarkable that molecular dynam-
Uo=T7ksT and (b) Uy=4ksT. The inset of(a) shows hexagonal cS (MD) simulations for a deep well deptho="7kgT, re-
closed-packed crystalline ordering at short length scales. produce the same large-scale fractal dimension as in 2D
DLCA, even though the short length scale structures of the
The parameters of the potentidl(x) are chosen such that clusters are totally different in these two models. In contrast
there is a secondary minimum =t 1.061 with well depth  MD simulations with a well depth otJ,=4kgT produce
U, and an energy barrier 10kgT atx=1.01. The potential compact clusters witlD;=2 that, as shown below, are in
is cut off atx=1.5. We have integratdd 4] the equations of equilibrium with a monomer gas.
motion for a system size of 25@nd 13 107 particles with For further quantitative comparison of the MD calculation
'=0.5 and a time stepA\t=0.005 in reduced units of with traditional models, we compute the mean-size of clus-
a(m/Jp)Y? with m=1. In Figs. Fig. 1a) and Xb) we show ters s and the cluster-size distributiom(N). For Ug
late-time snapshots for secondary well depty=7kgT and  =7kgT, one would expect that fragmentation of clusters will
4kgT, respectively. A striking similarity to Skjeltorp’s cluster be rare and a comparison with DLCA simulations will be
morphology is seen in Fig.(&) for Uy=7kgT: the aggre- meaningful over the simulation tinj&5]. For this reason, we
gates show hexagonal closed-packed crystalline ordering @lso carry out large-scale DLCA calculations in two dimen-
short length scalefinset of Fig. 1a)] but ramified fractal sions for a comparison withlo=7kgT results. In Fig. 8)
nature at larger length scales. To be specific, this cluster mowe show a log-log plot of the mean cluster s&zeersus time
phology cannot be reproduced by a traditional DLCA mod-t. The kinetic exponent for the MD simulations is found to be
eling for which the typical coordination number of a particle z=0.69+0.05 while for the 2D DLCA16] [as shown in the
in a cluster is=2. For a shallower well depti),=4kgT, inset of Fig. Fig. 83)] z=0.69+0.03, clearly demonstrating
the clusters are compact and the presence of a steady lartfeat MD simulations do reproduce DLCA kinetics for deep
number of monomers in the system at late times suggest @nough well depths.
solid-gas equilibrium. The approach to equilibrium is quan-  Although not a main focus of this study, it is still worth-
tified by the evolution of mean cluster size as we will presenwhile to introduce a scaling argument to understand the
shortly. value of the kinetic exponert We first note that the kinetic
Thelarge length scaleluster morphology is quantified in exponentz is related to the homogeneity of the aggregation
Fig. 2 by showing the evolution of the fractal dimension of kernel A by z=1/(1—\). Next, we write the aggregation
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FIG. 4. Scaling of the cluster size distribution.The times are the
same in both figures. The results are averaged over 10 ruia), In
open symbols represent the scaled cluster-size distribution for a 2D
DLCA simulation.

FIG. 3. (a) Log-log plot of mean sizs as a function of timé for
Uo=T7kgT from 2D MD simulations. The inset shows results for
2D DLCA simulations.(b) Log-log plot of the reduced mean size

s* as a function of reduced timg for Uy=4kgT. Results are . S .
compared with the theoretical resulf6] for coagulation- 4(a) where we plot the scaled cluster size distribution. This

fragmentation. graph demonstratgs that scaling works well for MD sjmu]a-
tions and, more importantly, the scaled size distribution
matches extremely well the distribution computed from the
kernelK as a product of an area cross sectbonR%"* and 2D DLCA simulation.
a characteristic velocity, i.e., K=vA. Here,R s the mean We now turn our attention to the MD results for a shallow
radius of the clusters containiny particles. In the dilute g depth, namely, fotJ,=4kgT. In this case, the fragmen-
limit, the characteristic velocity =Do/R whereDy is the  tation of the clusters plays an important role and the number
diffusion constant. SincBo~ 1/R for Brownian aggregation, of clusters and the cluster size distribution approach a steady
we obtainK~R?3. Since,N~RP\,K~N“"3"Pr Thus A state at late times. A mean-field model of random bond frag-
=(d—=3)/Dy in the dilute limit. In three dimensions, this mentation has been introduced by Family, Meakin, and
providesh =0 andz=1 as expectef]. In two dimensions, Deutch[5] and by Sorensen, Zhang, and Tayl®ZT) [6]
however, A\=—1/D¢=—0.7 with D¢=1.4 and hencez  which compare well with simulations of coalescing and ran-
=0.59 in the dilute limit. Since the clusters are fractals, thegomly fragmenting dropEL8]. However, the validity of such
cluster volume fraction f() increases as aggregation pro- mean-field models in the context of real, reversible aggrega-
ceeds. It is known that the kinetic exponeirimcreases as the tion is not known. Thus, a comparison of MD results with
system gets dengé7]. In this cluster dense regime, one can random-bond fragmentation models will be important.
understand this increase by considering that the charac-  In terms of reduced variables =s/s, andt* =t/t, SZT
teristic velocity is now given byD,/R,, whereR, is the  finds the following differential equation:
nearest neighbor distance and scaleRas- Né’d whereN,
is the number of clusters in the system. Sihdd.=N,,, the ds*/dt=s*M—g*a*2 (4)
number of monomers in the system which is a constint,
~N(@-2/P~1d gt the intermediate regime. This implies wheres, is the steady state mean sitgijs the time to reach
A=0.22 in three dimensions witlD;=1.8 and hencez  the steady state, andis the fragmentation kernel homoge-
=1.28 as seen befofd7]. In two dimensions, on the other neity. We numerically solve this first order differential equa-
hand, A=—0.5 in this cluster dense regime yielding tion for \=—0.7 and—0.5, the two values of found in two
=0.67 in good agreement with both the 2D DLCA simula- dimensions in the dilute and cluster dense regimes. In the
tion and MD calculations shown in Fig. Fig(&. SZT model, fragmentation is assumed to take place ran-
The similarity between MD simulation for deep second-domly throughout the cluster, while here we expect cluster
ary well minimum and DLCA is further demonstrated in Fig. fragmentation to occur mostly at the surface. One can, how-
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ever, choosea=1/2 in the mean-field model of SZT to also a hint of an exponential decay in the scaled size distri-
roughly incorporate this possibility. In Fig.(® we show bution for largex as seen by Hobbie.

results for the MD simulation folJ,=4kgT along with the In summary, we have carried out molecular dynamics

numerical results from Eq4). The results compare well at simulati_ons of two-dimensional s_econdary r_ninimum colloids

late times during the approach to equilibrium. The early-timel© Obtain a broad perspective into the dispersed-phase to
MD data totally deviate from the mean-field results of SzT,S0lid-phase transition. We find that the morphology evolves

and can be fit to a power-law which is reminiscent of anffom @ DLCA fractal morphology with increasing monomer
Ostwald ripening procedd9] coordination to compact crystals. The time at which this

A scaling of the cluster-size distribution fdyo=4ksT crossover occurs depends on the well depth. The aggregation

shows a RLCA tvbe power-law behavior. indicating that forkinetics and size distribution evolve from the DLCA limit to
. ype p L g that 1or “situation similar to RLCA but with fragmentation that al-
this shallower well depth clusters do not stick the first time

. lows a steady state, equilibrium size to be obtained.
they approach each other. Such a power-law form in the y d

scaling distribution has been observed by Hobbis] Financial support for this work was given by NASA Grant
in experiments with 2D depletion-driven colloids. There isNo. NAG 3-2360.
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